Od bieguna do bieguna - Bruno Winawer (książki czytanie .txt) 📖
Zbiór kilkunastu felietonów na temat rozwoju nauki i techniki, wydany w roku 1932. Opublikowany przez powstałe z inicjatywy Melchiora Wańkowicza wydawnictwo „Rój”, w serii Biblioteczka Historyczno-Geograficzna, używającej hasła: „Nie kłamać, bawiąc. Nie nudzić, ucząc”. Autor ze swadą opisuje zarówno najnowsze osiągnięcia, jak i historię odkryć i wynalazków. Wskazuje, jak wielkie zmiany zaszły w codziennym życiu dzięki rozwojowi wiedzy i zdobyczom techniki. Nie stroni również od snucia optymistycznych wizji lepszej przyszłości, ukształtowanej przez kolejne innowacje.
- Autor: Bruno Winawer
- Epoka: Dwudziestolecie międzywojenne
- Rodzaj: Epika
Czytasz książkę online - «Od bieguna do bieguna - Bruno Winawer (książki czytanie .txt) 📖». Wszystkie książki tego autora 👉 Bruno Winawer
A tymczasem „po tamtej stronie” powstały zagadnienia może jeszcze ciekawsze. Wielki uczony indyjski, J. C. Bose14, pracuje od lat nad zjawiskami w przyrodzie martwej, które określić można ściśle tylko terminem zapożyczonym z innej dziedziny: zmęczenie metali. Wybitni badacze zjawisk radioaktywnych doszli razem z chemikami do wniosku, że atomy, martwe atomy fizyczne, tworzą „klasy” zupełnie podobne do tych, które od wieków spostrzegliśmy w świecie zwierzęcym i roślinnym. Co więcej, owe martwe drobiny, zupełnie jak zwierzęta i rośliny, podlegają pewnej nieomal darwinowskiej ewolucji: z uranu powstaje po lat milionach promienny rad, z radu emanacja15. Znakomity mój rodak z Warszawy i kolega z Heidelbergu, profesor Kazimierz Fajans16, przepowiedział ongiś, że w naturze muszą istnieć dwa różne gatunki ołowiu: jeden, który się wywodzi w prostej linii od uranu i drugi, który ma dalekiego praojca w torze. Takie dwa ołowie odnaleziono istotnie — mają różny ciężar atomowy. Ewolucja w świecie zwierzęcym idzie „wzwyż”: na naszym globie powstają coraz doskonalsze, w każdym razie coraz bardziej skomplikowane okazy; atomy ciał promieniotwórczych rozpadają się, ich potomstwo jest coraz prostsze, mniej wartościowe, ale za to w przestrzeniach kosmicznych, jak o tym świadczą głośne dziś promienie Millikana17, wre praca i z protonów i elektronów powstają imponujące arcytwory.
Można analogii znaleźć jeszcze więcej. Profesor uniwersytetu londyńskiego, A. E. Boycott18, FRS, przypomina w zajmującym odczycie, że nawet najbardziej znamienną cechę organizmów żywych: zdolność „odradzania się” po katastrofie, znajdujemy w świecie drobin fizycznych. O „uszkodzonych” molekułach-jonach, które następnie odzyskują stracone elektrony i wracają do normy, czytamy ustawicznie w podręcznikach i artykułach z dziedziny nauk ścisłych. Te podobieństwa i paralele19 nie miałyby może większego znaczenia, ale dziwnym trafem w ostatnich czasach nawet czcigodna fizyka teoretyczna nasuwa je wyraźnie w trudnych i poważnych pracach matematycznych. Genialni młodzi teoretycy nowszej szkoły, Schroedinger, Heisenberg, Dirac20, doszli do przekonania, że w martwym świecie atomów istnieje jak gdyby „wolna wola”, że nasze prawa i dociekania nie mogą z absolutną ścisłością ze stanu obecnego materii wyprowadzić jej stanu przyszłego. W ciałach promieniotwórczych np. pewna część atomów, pewien ich procent rozpada się co sekundę, ginie i umiera, zupełnie jak w środowiskach ludzkich. Ale ludzie chorują, starzeją się, popełniają czyny nierozważne. Czym się różnią od innych te atomy, które za chwilę mają zginąć? Czyżby i one miały jakieś przeżycia osobiste? Tragedie indywidualne?...
Bardzo wybitni uczeni głowią się dziś nad podobnymi zagadnieniami. Świat najmniejszych istot żywych poznaliśmy dopiero dwieście pięćdziesiąt lat temu, dzięki znakomitemu Leeweunhoekowi21. Nie traćmy nadziei. Może odnajdziemy klucz do najbardziej dręczących tajemnic odwiecznych.
Odczyt znakomitego znawcy krajów arktycznych, profesora Samojłowicza22, w Warszawie przypomniał niedawno publiczności wielkomiejskiej, że od lat gromady dzielnych uczonych trudzą się na dalekiej północy. W najbliższym czasie wyrusza łamacz lodów „Siedow” do bieguna, specjalny statek bez załogi, zaopatrzony w automatyczne przyrządy prof. Mołczanowa. Ma być puszczony na Morze Lodowate23 i będzie sygnalizował falami radiowymi dane meteorologiczne. Razem około 200 różnych ekspedycji badać ma w latach najbliższych tajemnicze kraje polarne.
Technika nowoczesna oddała badaczom na usługi sanie motorowe, aparaty lotnicze, potężne zeppeliny — wydaje się, że dziś albo jutro zniknąć muszą wszystkie białe miejsca na mapach, że nareszcie będziemy wiedzieli... wszystko. Nie ma obawy! Każdy nowy krok odsłania nowe zagadki. W strefie podbiegunowej odnaleziono np. bogate pokłady węgla, co świadczy wymownie o tym, że w tych pustkach lodowych istnieć musiały niegdyś rośliny, lasy. Mamy tedy24 znów zagadnienie poważne, problemat25, nad którym głowią się od lat najwybitniejsi uczeni: co znaczą epoki lodowcowe? Jak wytłumaczyć głośne zmiany klimatyczne w historii naszego globu? Jak to się stało, że ongiś wieczne lody sięgały aż po dzisiejszy Kraków?
Studiujemy i badamy tylko cienki naskórek planety, znamy zaledwie powierzchnię kotła, na którym nas los umieścił. Jak sobie wyobrazić wnętrze Ziemi? Czułe aparaty sejsmograficzne, rozrzucone już dziś po całym świecie, od Japonii do Ameryki, od Frankfurtu do Toronto, notują każdy wstrząs starego globu z odległości tysięcy kilometrów. Każda „fala elastyczna” zaznacza się wyraźnie na taśmach udoskonalonych przyrządów i to nasunęło geologom współczesnym pewien pomysł: badają Ziemię jak lekarz pacjenta, osłuchują ją, a nawet opukują: wywołują niekiedy sami potężne sztuczne eksplozje i obserwują pilnie przebieg drgań, studiują załamania i odbicia fal sprężystych. W ten sposób udało się ustalić, że żelazne jądro Ziemi — stałe, płynne czy gazowe? tego nikt nie wie! — jest kulą o promieniu 3500 kilometrów. Co dalej? Geologia twierdzi, że nasz glob ma strukturę owego drewnianego jaja wielkanocnego, którym się dzieci bawią. Naokoło sfery centralnej leży inna warstwa, Nife, później Sima. Nie trzeba się bać tych wyrazów, są to po prostu inicjały pierwiastków chemicznych. Nasz stały ląd nazywa się Sial (krzem-glin czyli Si i Al), ma zaledwie 100 kilometrów grubości i... pływa na cięższych krzemach, jak krypa26 na wodzie.
Genialny uczony wiedeński, profesor Alfred Wegener27, wsławił się przed laty teorią tak fantastyczną, że nawet świat naukowy był nią trochę oszołomiony. Zdaniem Wegenera wszystkie lądy dzisiejsze — Ameryka, Afryka, Europa, Azja — tworzyły w odległej epoce kredowej jeden wspólny kontynent, który się następnie rozdarł wzdłuż dzisiejszego Oceanu Atlantyckiego, „rozjechał” jak stara marynarka, i utworzył wreszcie cztery części świata. Pewne podejrzenia istniały już dawniej: uczeni zauważyli np., że w Brazylii i w Afryce Południowej trafiają stale na szkielety tych samych zwierząt wykopaliskowych28, odbitki tych samych roślin, odnajdują na pewnej głębokości te same warstwy geologiczne. Ale dopiero genialny geolog wiedeński przyjrzał się uważniej linii brzegowej obu Ameryk po jednej stronie i linii afrykańsko-europejskiej po drugie i postawił śmiałą hipotezę: dwie połowy rozdartego listu! Dość popatrzeć na mapę albo na globus, by dostrzec, jak dalece ta idea wydaje się prawdopodobną.
Nie przekonał jednak sceptyków, bardzo poważni fachowcy wysuwali dość zastanawiające kontrargumenty. Wegener nie tracił czasu na polemiki, nie rzucał pustych słów. W najtrudniejszych dla nauki czasach zebrał garść kolegów, wyprawił się z nimi na wieczne lody dalekiej Grenlandii i tu na niezbadanych pustkach założył jedyne może w świecie „laboratorium” geologiczne. Ów olbrzymi ląd północny ma kształt klina, który pasuje świetnie do wybrzeża północnej Ameryki i do brzegów norweskich Europy. Ale i Grenlandia, jak wykazały wyliczenia skrupulatne, „pływa”: przesuwa się na zachód z szybkością 9 metrów na rok w latach 1823–1870, a w ostatnich czasach „jedzie” nawet znacznie szybciej: 32 metry rocznie. Mało, ale dziś i takie prędkości mierzyć umiemy.
Jest jeszcze jeden punkt kardynalny. Jeżeli ów ląd, pływający na cięższych pokładach geologicznych, stosuje się doprawdy do teorii Wegenerowskiej, to powinien się ugiąć pod ciężarem wiecznych lodów jak przeładowana krypa na rzece. Śmiały teoretyk wyliczył, że grubość warstwy lodowej wewnątrz lądu musi być o wiele większa niż po brzegach.
I gromadka uczonych na dalekiej wyspie arktycznej jęła29 w długie dni polarne i jeszcze dłuższe przeraźliwe noce podbiegunowe mierzyć i wyliczać metodami sejsmograficznymi wypracowanymi w Getyndze. Założono stację obserwacyjną Eismitte, 400 kilometrów od wybrzeża. Ustawiono aparaty precyzyjne i 25 wybuchów dynamitowych przerwało odwieczną ciszę. Rezultat? Wegener ma słuszność zupełną. Lód wewnętrzny tworzy pokład na 2700 metrów grubości, lód w strefie przybrzeżnej ma tylko 700 metrów grubości. Grenlandia nie tylko pływa, ale ugina się pod ciężarem jak tratwa. Przewidywania teoretyczne sprawdziły się w całej rozciągłości. Prawdopodobnie i inne wnioski są słuszne: Kolumb nie odkrył Ameryki, ale, właściwie mówiąc, „dopędził” ją na oceanie. Ląd amerykański wyprzedził nieco głośnego nawigatora hiszpańskiego i odbił od Europy przed pół milionem wieków.
Wegener nie dożył wielkiego triumfu swoich teorii. Zginął razem z wiernym Eskimosem, Rasmusem, pewnej nocy, kiedy usiłował dotrzeć do towarzyszów wyprawy uwięzionych na stacji Eismitte i zaopatrzyć ich w prowiant. Członkowie ekspedycji wytrwali na stanowiskach i sami, bez wodza, doprowadzili dzieło rozpoczęte do końca.
W poważnych księgach powstał jeden, bardzo cenny rozdział, przysłowiową „pomrokę dziejów” prześwietlono promieniami bardzo ciekawej teorii geologicznej, ale to nie jest dla nas, laików i czytelników, wynik najważniejszy.
Historia wyprawy Wegenera ma urok dawnych poematów epickich. Świadczyć będzie po wsze czasy, że i w naszej trzeźwej epoce żyli ludzie bohaterscy. Narażali życie w niebezpiecznych ekspedycjach, ale szli w dalekie kraje nie po zdobycz i okup, tylko po wiedzę.
Do długiej listy Prometeuszów, męczenników nauki, przybyło jedno jeszcze nazwisko — Wegener, geolog.
Londyn, z nim Anglia i reszta świata, obchodził niedawno uroczyście aż dwa jubileusze, dwa wielkie święta naukowe. Minęło sto lat od chwili, kiedy Michał Faraday30 — jak twierdzą bardzo wybitni uczeni: największy geniusz w dziejach wiedzy przyrodniczej — odkrył indukcję31 i stworzył dynamomaszynę32, fizykę eteru33, elektrotechnikę, stworzył olbrzymi przemysł i ukazał nowe kontynenty badaczom. Minęło również sto lat od chwili, kiedy w Anglii powstało rozgłośne i dostojne towarzystwo przyjaciół nauk, sławetna i wielce zasłużona British Association34.
Gazety podały imponujący program obchodu, nagłówki referatów, zaznaczyły, że nawet wielka Albert Hall35 nie mogła pomieścić tłumów, które się chciały przyjrzeć najznakomitszym przedstawicielom nauki w świecie współczesnym. Przemawiali lord Rutherford, Zeeman, Debye, J. J. Thomson, de Broglie, Eddington, Millikan, Jeans36. Te nazwiska przejdą na pewno do potomności i w następną setną rocznicę nasi wnukowie wymieniać je będą z tą samą czcią, z jaką my dziś wymawiamy nazwiska Newtonów, Koperników, Faradayów. Rzecz ciekawa: właśnie w naszych smutnych czasach żyje na świecie nadspodziewanie wielka gromada genialnych ludzi i kto wie, czy nasza burzliwa epoka nie otrzyma kiedyś w historii zaszczytnej nazwy — epoki Nowego Odrodzenia...
Spora część programu londyńskiego poświęcona była, jak zwyczaj każe, wspomnieniom i „rzutom oka wstecz”. Okazało się przy tym raz jeszcze, że front naukowy posunął się naprzód nieprawdopodobnie daleko w dziesięcioleciach ostatnich. Ziściliśmy wszystkie marzenia Faradaya: z wątłych drucików, w których odkrył indukcję, powstały dziś potężne generatory, z transformatorów tryskają iskry czterometrowej długości, nasze aparaty rejestrują napięcia czterech-pięciu milionów woltów. Odkryliśmy nie tylko ów wpływ magnesu na światło, którego tak uporczywie szukał ongiś wielki fizyk, ale znaleźliśmy nowe fale w eterze, nowe gatunki promieni. Indukcja rozwinęła się tak dalece, że drucik umieszczony pod biegunem północnym reaguje natychmiast na prąd elektryczny wytworzony w Nauen pod Berlinem albo w Schenectady w Ameryce i... to jest właśnie podstawą radiofonii. Nowe zaś gatunki światła pozwoliły ludziom rozwikłać tajemnicę budowy atomów. Zrozumieliśmy, że materia jest dziwacznym splotem sił i cząsteczek elektrycznych. Za lotną fizyką, która jest i była zawsze skrzydlatą awangardą nauk ścisłych, rusza pędem chemia. Powitały nowe dziedziny nauki: fizykochemia i nauka o pierwiastkach promieniotwórczych. Nie poprzestając na roli biernych widzów-analityków, zabraliśmy się do syntez i dziś tworzymy w retortach i bombach37 stalowych płynny węgiel, środki pobudzające działalność serca, związki zabijające bakterie śpiączki. Chemik nauczył się wykrywać i badać niewidzialne odrobiny substancji i o niezwykle ważnych w naszym życiu „witaminach” mówili w Londynie szeroko głośni, znakomici odkrywcy: Jansen, Boudrillon, Wieland, Windaus38.
Ale nie tylko świat drobin zawojowaliśmy elektrometrami i ultramikroskopami. Inna gromada śmiałych Kolumbów nowoczesnych ruszyła na podbój wszechświata i uczony dzisiejszy igra kosmosami jak Cochet39 piłkami tenisowymi. Na kongresie londyńskim rozgorzała niezwykle emocjonująca dyskusja na temat dawniejszych i przyszłych losów ogromu kosmicznego, dyskusja, w której brali udział Jeans, Eddington, Lodge, Millikan, E. A. Milne i najgenialniejszy z genialnych astronomów czasów nowszych, znakomity twórca teorii o „pulsującym wszechświecie”, profesor holenderski, de Sitter.
Oczywiście omówiono też szerzej jedną z najważniejszych pozycji w dorobku dwóch pokoleń ostatnich — teorię ewolucji.
Przez długie lata nauka przyglądała się dość bezradnie tysiącom gatunków i rodzin świata zwierzęcego i roślinnego. Samych tylko owadów jest podobno półtora miliona różnych odmian. Sprawa skomplikowała się jeszcze bardziej, kiedy z głębszych warstw geologicznych poczęto wydobywać na światło dzienne szkielety olbrzymich ssaków, ptaków, gadów. Koń był ongiś wielkości dzisiejszego psa, za to zdarzały się jaszczurki niewiele mniejsze od „Zeppelina”. Jak to sobie wszystko wytłumaczyć? Jakie ambicje twórcze ma przyroda? Dlaczego wypuszcza z pracowni potworne olbrzymy, każe im ginąć, zagrzebuje w piachu, a zostawia małe mrówki i jeszcze mniejsze bakterie?
Przed wiekiem prawie (moglibyśmy na dobrą sprawę znów urządzić jubileusz) padł pierwszy promień i rozświetlił nieco tajemnicze mroki. Spostrzeżono, że natura ma szereg „patentów” na szczęki, czaszki, kręgosłupy, kończyny, że tysiączne odmiany mają wspólny plan konstrukcyjny, dostrzeżono „rozwój” organizmów, zależność od warunków zewnętrznych. Ustalono pokrewieństwa dziwaczne i wyrysowano ciekawe drzewa genealogiczne. W ostatnich latach biologia amerykańska i niemiecka (profesor Muller40) odnalazła nawet klucz najważniejszej zagadki: fantastyczna różnorodność potomstwa — a stąd różnorodność odmian — wytwarza się pod wpływem promieni rentgenowskich i prawdopodobnie pod działaniem niedawno odkrytych
Uwagi (0)